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Moment tensor potentials

The energy is a polynomial of inner products of 
vectors between atoms and the vector lengths.

A. V. Shapeev, Multiscale Model. Simul., 14(3), 1153–1173.
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Moment tensor potentials

The energy is a polynomial of inner products of 
vectors between atoms and the vector lengths.

They demonstrate excellent balance between speed 
and interpolative predictive accuracy.

Y. Zuo et al., The Journal of Physical Chemistry A 124, 4, 731–745 (2020)
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In the anode and cathode, lithium ions 
typically diffuse by hopping into vacant sites.

The activation energy can be calculated using 
the nudged elastic band method.
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Diffusion in these 
materials typically 

occurs via concerted 
lithium motion.



)

Concerted lithium-ion diffusion

C. Wang, K. Aoyagi, P. Wisesa, and T. Mueller, Chemistry of Materials 32, 9, 3741–3752 (2020)
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In the superionic conductors used 
as electrolytes, diffusivity can be 

calculated using ab-initio
molecular dynamics.
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These do not need to be superionic 
conductors.  Diffusion is too slow 
for ab initio molecular dynamics.  



Ensuring high accuracy

C. Wang, K. Aoyagi, P. Wisesa, and T. Mueller, Chemistry of Materials 32, 9, 3741–3752 (2020)

Moment tensor potentials can be highly 
accurate for local configurations similar to 
ones used to train them.
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C. Wang, K. Aoyagi, P. Wisesa, and T. Mueller, Chemistry of Materials 32, 9, 3741–3752 (2020)

Moment tensor potentials can be highly 
accurate for local configurations similar to 
ones used to train them.

Sometimes a configuration unlike any in the 
training set is encountered.



Learning on the fly
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Moment tensor potentials can be highly 
accurate for local configurations similar to 
ones used to train them.

When encountering a new configuration, 
potentials can “learn on the fly”: the new 
configuration is automatically added to the 
training data and the potential is retrained to 
ensure accuracy.



Learning on the fly

C. Wang, K. Aoyagi, P. Wisesa, and T. Mueller, Chemistry of Materials 32, 9, 3741–3752 (2020)

Moment tensor potentials can be highly 
accurate for local configurations similar to 
ones used to train them.

When encountering a new configuration, 
potentials can “learn on the fly”: the new 
configuration is automatically added to the 
training data and the potential is retrained to 
ensure accuracy.

The resulting potential generates molecular 
dynamics data seven orders of magnitude 
faster than ab-initio molecular dynamics with 
nearly the same accuracy.



Better Arrhenius plots

C. Wang, K. Aoyagi, P. Wisesa, and T. Mueller, Chemistry of Materials 32, 9, 3741–3752 (2020)



C. Wang, K. Aoyagi, P. Wisesa, and T. Mueller, Chemistry of Materials 32, 9, 3741–3752 (2020)
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Experimental activation energy

Mean absolute 
error = 0.13 eV

Mean absolute 
error = 0.32 eV

Better experimental validation



New candidate coating materials

Li₃Sc₂(PO₄)₃

Solid-state electrolytes

Li₃B₇O₁₂

C. Wang, K. Aoyagi, P. Wisesa, and T. Mueller, Chemistry of Materials 32, 9, 3741–3752 (2020)

Li7P3S12

Li10GeP2S12

Li10SnP2S12

Li10SiP2S12

Li6PS5Br
Li6PS5Cl

Li₃B₇O₁₂

Eₐ = 0.56 eV

LiCoO2

LiFePO4

LiMn2O4

Li(MnNiCo)1/3O2

LiMn1.5Ni0.5O2

Coating Cathodes

Solid-state electrolytes

Li7P3S12 Li₃Sc₂(PO₄)₃

Eₐ = 0.64 eV

LiFePO4

Li(MnNiCo)1/3O2

Coating Cathodes



Speed considerations

Moment tensor potentials are among the fastest 
machine-learned interatomic potential models, but 
they are still 1-2 orders of magnitude slower than 
widely-used physics-derived models like the 
embedded atom method.
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1. Select a hypothesis space

Functions that can be created by combining addition
subtraction, multiplication, division, exponentiation, 
distance, sum over neighbors, constant values.
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Supervised machine learning

1. Select a hypothesis space

Functions that can be created by combining addition
subtraction, multiplication, division, exponentiation, 
distance, sum over neighbors, constant values.

Many physics-derived models exist in this hypothesis 
space:  Coulomb, Lennard-Jones, harmonic 
potentials, embedded atom method, bond order 
potentials…



Supervised machine learning

1. Select a hypothesis space

Functions that can be created by combining addition
subtraction, multiplication, division, exponentiation, 
distance, sum over neighbors, constant values.

Functions are represented
as trees.

m ^

c 2

× E = mc2



Supervised machine learning

2. Select an objective function



Supervised machine learning

2. Select an objective function

Find candidates on convex hull with respect to

• Fitness
Based on errors with respect to standardized 
energies, forces, and virial stresses.



Supervised machine learning

2. Select an objective function

Find candidates on convex hull with respect to

• Fitness

• Speed
Faster models can handle larger time and length 
scales.



Supervised machine learning

2. Select an objective function

Find candidates on convex hull with respect to

• Fitness

• Speed

• Complexity
Simpler models are less likely to overfit training 
data.  



Why do we care about complexity?



Supervised machine learning

3. Search the hypothesis space
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This problem is known as “symbolic regression”.  



Supervised machine learning

3. Search the hypothesis space

This problem is known as “symbolic regression”.  

We use an approach called “genetic programming”, in 
which functions evolve using an evolutionary 
algorithm.
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( 1)r 

Evolutionary step:  Mutation

We use conjugate 
gradient and CMA-
ES to optimize the 
parameters.



Regenerating the embedded atom method

(Sutton and Chen, Philosophical Magazine Letters, 1990)

Potential model used to generate training data
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(Sutton and Chen, Philosophical Magazine Letters, 1990)

Potential model used to generate training data

Potential model found by genetic programming
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A. Hernandez, A. Balasubramanian, F. Yuan, S. A. M. Mason and T. Mueller 
npj Computational Materials 5, 112 (2019) 



Regenerating the embedded atom method

0.50

9.00 6.00

52644.55
0.73

7.32

i j j

V
r r

  
         

  

(Sutton and Chen, Philosophical Magazine Letters, 1990)

Potential model used to generate training data

Potential model found by genetic programming (simplified)
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A. Hernandez, A. Balasubramanian, F. Yuan, S. A. M. Mason and T. Mueller 
npj Computational Materials 5, 112 (2019) 



is a tapering function.

New models for copper from DFT data 

GP1

    13.98 3.94 11.74 2.93( ) 27.32 (11.7.33 13 0.03 ) ( ) ( )r rr f r r f rV r f
     

GP2

  110.21 5.47( 0.21 ) ( ) 0.97 0.33 ( )r r rr f r f r
   

( )f r

A. Hernandez, A. Balasubramanian, F. Yuan, S. A. M. Mason and T. Mueller 
npj Computational Materials 5, 112 (2019) 



Pareto frontier for elastic constants

SC: (Sutton and Chen 1990), ABCHM and Cu1: (Mendelev, Kramer et al. 2008), EAM1 and 2: (Mishin, Mehl et al. 2001), Cu2: 
(Mendelev and King 2013), Adams: (Adams, Foiles et al. 1989). Cuu3: (Becker et al., Current Opinion in Solid State and Materials 

Science, 2013), CuNi: (Onat and Durukanoglu, JPCM, 2013)
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Pareto frontier for elastic constants
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Training and validation errors are similar

Blue is validation, orange is training. MAE: validation, training

GP1

GP2

MAE:  3.53, 3.68 MAE:  75.2, 76.7 MAE:  0.345, 0.311

MAE:  2.7, 2.57 MAE:  60.2, 59.1 MAE:  0.33, 0.3



GP1 and GP2 are transferable
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Low prediction errors

A. Hernandez, A. Balasubramanian, F. Yuan, S. A. M. Mason and T. Mueller 
npj Computational Materials 5, 112 (2019) 

bcc lattice constant 
|Å|

ABCHM CuNi EAM1 EAM2 Cuu3 Cuu6GP3

2.4 0.90.2

bcc-fcc formation energy 
|meV / atom| 11 13 212

hcp-fcc formation energy
|meV / atom| 4 62

vacancy migration energy 
|meV| 20 40 2049

dumbbell formation energy
|meV| 25015

phonon frequencies at X
|% error| 4.42.1

phonon frequencies at L and K
|% error| 2.6 4.1 5.52.5

intrinsic stacking fault energy
|mJ / m2| 0 96

Lowest testing error Testing error



Very fast execution

A. Hernandez, A. Balasubramanian, F. Yuan, S. A. M. Mason and T. Mueller 
npj Computational Materials 5, 112 (2019) 



Additional resources

Open source code for potential generation using genetic 
programming

https://gitlab.com/muellergroup/poet

Tools for automatically generating efficient k-point grids

http://muellergroup.jhu.edu/K-Points.html
https://arxiv.org/abs/1907.13610
https://gitlab.com/muellergroup/k-pointGridGenerator
https://gitlab.com/muellergroup/kplib


